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TECHNICAL NOTE 2145

LIFT-CANCELLATION TECHNIQUE IN LINEARIZED
SUPERSONIC-WING THEORY

By Harold Mirels

SUMMARY

A lift-cancellation technique is presented for determining
load distributions on thin wings at supersonic speeds. The tech-
nigque retains certain features of the method recently introduced
by Theodore R. Goodman, while simplifying and generelizing others.

A genersal "‘expression is derived for the load distribution over
a cancellation wing. This expression permits the determination of
1ift distributions on wings that cannot be solved by cancellation
techniques based on the superposition of conical flows, The bound-
ary conditions for either a subsonic leading edge or a subsonic
tralling edge can be satisfied. Applications of the expression to
swept wings having curvilinear plan forms and to wings having
regentrant side edges are indicated.

INTRODUCTION

The method of 1ift cancellation for obtaining the lift dis-
tribution on thin wings at supersonic speeds was first suggested
in reference 1. The 1lift distribution on a given wing is deter-
mined by canceling excess 1lift, through the use of a 'cancellation
wing," on a related plan form having a known loading. This approach
has been applied by several authors (for example, references 2 to 4).
The expressions provided in reference 1 are applicable for wings
that can be generated by the superposition of conical fields.

A procedure is presented in reference 5 for determining 1lift
on & more genersl class of plan forms than can be handled by coni-
cal superposition. The method utilizes a surface distribution of
doublets and an inversion by means of Abel's integral equation and
is equivalent to a 1ift cancellation.
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This report, prepared at the NACA Lewis laboratory, retains
certain features of reference 5 (that is, the use of a surface dis-
tribution of doublets and an inversion by means of Abel's integral
equation), whereas other features are simplified and generalized.
The simplification consists in eliminating steps in the procedure
for obtalning 1ift distributions. The generalization consists in
determining a solution that can be made to satisfy the boundary
conditions for either a subsonic leading edge or & subsonic tralling
edge (Kutta condition). The method of reference 5 yields only the
Kutte solution. The lift-cancellation technique developed herein
is illustrated by several examples.

In a concurrent investigation (reference 6), source distribu-
tions and integral-equation formulations have been appllied to obtain
the loading on a special series of cancellation wings. Reference 7
employs some of these cancellation wings for the determination of
1lift and moments on swept wings.

THEORY

The usuel assumptions of an inviscid fluid and small perturba-
tions are made. The velocity field consists of the free-stream
velocity U (taken in the positive x-direction) plus the perturba-
tion velocities u, v, end w. The wing boundary conditions are
specified in the 2z = 0 plane.

The local 1ift coefficient ACP may be expressed in terms
of Au. That is,

ac, - PB;PT _ z(ulTj"uB) - 28 (1)

(A1l symbols used in this report are defined in appendix A.) Inas-
much as the local 1ift coefficient is directly proportional to Au,
Au will be referred to as "lift" in later developments.

Lift-Cancellation Method

The 1ift distribution on a given wing is to he determined by
canceling excess lift on a related wing with a known loading. The
method is 1llustrated in figure 1. The wing for which the 1lift
distribution is desired is shown in figure 1(a) The solution can
be expressed as the two-dimensional wing (fig. 1(b)) minus a can-
cellation wing (fig. 1(c)). The loading in region I of the
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cancellation wing equals the loading in the corrssponding region of
the two-dimensional wing and the upwash w in region II of the
cancellation wing is zero. The loading of the two-dimensional wing
minus that of the cancellation wing satisfies the boundary conditions
for the flow about the given wing and is the desired solution.

The fundamental problem in the lift-cancellation method is then
to determine the lift in reglon II of a cancellation wing subject
to the condition w = 0 in this region and with the assumption of
a known loading in region I. Solution of this problem is presented
in the followling sections. '

Derivetion of Lift-Cancellation Equations

The 1ift distribution in region IT will be expressed in terms
of quantities In region I.

Consider the cancellation wing shown in figure 2. The portion
of the leading edge to the left of the origin coincides with a Mach
line. The portion of the leading edge to the right
(designated r = rq(s)) is shown as & supersonic edge, although no
restrictions as to a subsonic or supersonic edge are imposed. (A
plan-~-form edge 1s subsonic or supersonic depending on whether the
component of the free stream normal to the edge is subsonic or
supersonic.) The line designated r = rz(s) separates region I
and region II and is assumed to be subsonically inclined to the
free stream at all points., This line corresponds to a plan-form
edge of the wing for which the 1lift distribution is desired.

General solution for load distribution on cancellation wing. -
The upwash field in the z = O plane (due to an arbitrary distribu-
tion of vorticity Au eand Av) may be written, from reference 8,

[:(y-yo)Av + (x—xo)Au:I dx, dy,
T BX-XO)Z-Bz(y-YO){Is/ ?

The symbol r—_— deslgnates the finite part of an infinite Integral,
ag defined in reference 9. Application of the finite-part concept-
to linearized supersonic-wing theory and the evaluation of the finite
part of an infinite integral are discussed in references 8 and 10.
For the present, it will suffice to state the fundemental definition
of the finite part of an integral with a 3/2-power singularity,
ramely,

(2)

2
'w_-_,—_g__
2
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f(xo)‘h‘o ]:f(xo)-f(x)]dxo_ 2f(x) (3)
(x-2,)°2  ax) =-a)/%

By a transformation to the Mach coordinates of reference 11,

x =<I% (s+1) T = l% (z-By)
y =5 (s-1) s = — (z+By) ) (4)
elemental aree = 28 dr ds

.MZ P,

equation (2) becomes

(s -5,) L% 3‘“” + (rr) Llar, as,
r-ro)(s s°]3/2

Upon substitution of the limits of integration, as indicated in
figure 2,

(5)

8

3_9 ar,
w=2L dso
8x (5-50)3;2 ( (r-r )1;
0 o

1‘18

aAcp ar,

(s-s )1; f (r-r ) (r-r )2
rl( o)

(6)

L62T
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Integrating by parts, noting that AP =0 at ry = ry(s,), and
recalling the definition of the finite part (equation (3)) yield

¥ BAcpdr | . o
1im AQ ° 1 AP drg,
(r-r o) 1/2 rooT | (r- 0)1;2 (s.) e (r-ro)3;2
r1(8,) 1'% r1(85)
T
=.1 A9 drq - (7)
2 (- 7
rl(so)
Thus

BNP ° '
_ _:I_. d-so AP d-ro
(s-8 )5;2 ) (r-r,) ; 2 o (3-30)3;2 v (s )(1'-1‘0)5;2
(s 1 o

(8)

Similarly, reversing the order of integration (with appropriate
changes in limits of integration), integrating by parts, and then
returning to the original order of integration esteblish the identity

aAcp
E _ .]_'. A dro
(8- so)l; (r-t )5 2 (s-8 )3; r-ro)s;z
1

(9)
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The right side of equations (8) and (9) are identical. Equation (6)
can now be written as

=M q’d"’ (10)
YT B o(“)7f )(r-r>

For points in region II, w = 0 and eguation (10) becomes

8 r
_ as, AP ér,
| G| G )
0 r,(s,)
or
8
o G(r,8,) ds, (111)
= ( )372
where
r
AP dr )
&(r,s5) = ———/-° (12)
o rl(so)(r_ro)3 2

Equation (11b) is an integral equation for the unknown function
G(r,8,). The solution (appendix B) is

G(r,s,) = O (13)

T r2(55)
AP d.r ACPI AP__dr
0= o)
(r-z,) 72 (r-,)° f (z-r, )2

ry(8,) ry(8,) r,(8,) °

L621
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or

r(s)
-—-—~—77- """‘7r' (14)
rr) rr)
T (s ) 1(s ,

The right side of equation (14) will be considered known. Bqua-~
tion (14) is then an integral equation for AP;y. The solution
(appendix B) is

»(8)
appy = A2 S (15)
r,(s) (- O)A’rg(s) -Tq

Equation (15) indicates that the doublet strength in region II,
namely N?II, can be obtained by a line integration along 8y = B

in region I. The geometric interpretation of the various terms in
equation (15) is shown in figure 3.

It can be shown, by expanding &P 1in a Taylor's series about
T = rp(s), that equation (15) yields a continuous solution
(APr7 = &P1) at r = ry(s). (A discontimuity in AP implies a
lifting line (reference 12) and is unrealistic.)

The 1ift distribution in region II can be expressed as

Ao = oMPry - OAPry or . OAPrT 3s
II -~  ox 3r 3= ' T3 ox

M{(d )

o

or, from equation (15),

rz(s)
28y (2, 2| AEm) P o
¥ .(& 5| (r-x6) Alzz(8)-,

(16)




8 _ NACA TN 2145

Differentiation yields (See appendix C.)

(s)
‘Jr‘ 2(s y[\ i Auy drg

(o) T A2 (B)z

Aurr =

, ry(s)
- drgis) (BAuI-AvI)dro

1
28 r- A (s)-
xA’ ro(s) ry(8) thz SRR

Equation (17a) is ‘the desired expression for the lift distribution
in region II in terms of quantities in region I.

(172)

Consider Auyy to consist of two components, Aupy' and

1" t b1
AuII s Where AuII and AuII are the first and second terms
on the right side of equation (17a), respectively. Investigation
of the integrals indicates that at r = rp(s), Aupy' = dug;

whereas AuII", in general, has & half-order singularity.

When region II is to the right of region I (fig. 3(b)), the
integration for. Auyy 1s conducted along the line r, =r and

may be written as

5,(r)
A A’s sz(r Aup ds
IT = () (s- so)A’sz(r) -84
B\r

32(1')
. (BAuI+AvI)dso

1
2 - -
Bt ds so(r) 5y (r) A’sz(r) 5¢

dsg(r)

(17v)
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Discussion of equations {17a) and (17b). - In the paragraph
preceding equation (2), the line r = ro(s) was described as sub-
sonically inclined at all polints to the free stream. This condition
is necessary so that the inner integral in equation (1la) (that is,
G(r,s,)) can be equated to zero for all points in region II. If
this restriction on r = ry(s) is not satisfied, the development
beyond equation (1lla) becomes invalid. The derivation of cancella-
tion equations when r = rp(s) 1s supersonic was not underteken

because such problems can be solved more simply by other methods.

In regard to the boundary conditions, it has been assumed that
Au; is specified. Equations (17a) and (17v), however, indicate

that a knowledge of Avy 1s also required in order to obtain a
solution for Aury. Two possibilities exist, as illustrated in

figure 4. In the first case (fig. 4(a)), region I is upstream of
region IT (along the line r = rp(s)) and Avy is uniquely defined

by the specified du; according to the relation

X -

Avy = g% x1(y)‘AuI ax, | (18a)

The Integration is conducted along lines of constant y. In the
second case (fig. 4(b)), region II is upstream of region I (along
the line r = rp(s)) and the expression for Avy in region I

(for y<0) is

xo(y) : x
Avy = g? Aupp dx, + Augp dx, (18p)
-By x5 (y)

Equation (18b) indicates that a knowledge of Auyy 1s required in
order to find Avy. But Avy must be known (equation (17a)) before
Aupyr cen be foupd. Thus, the solution for Auyy from a specified
Aur 1s not unique for the configuration of figure 4(b) and an
additional boundary condition must be imposed. The line r = rz(s),
however, corresponds to a plan-form edge of the airfoil whose load
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distribution is desired. The situation indicated in figure 4(b)
occurs when r = rp(s) corresponds to a subsonic trailing edge.

The additional condition to be imposed is therefore the Kutta con-
dition. In terms of the cancellation wing, this condition requires
that the perturbation velocities be continuous in crossing r = rz(s).

Solution for Auyy satisfying Kutta condition at r = rp(s). -

It will now be shown that when the Kutta condition is imposed at
r = rp(s), the appropriate Avy distribution is such as to make

the second integral in equation (17a) identically zero; that is,

rz(s)
BAu -AvI
[ (s)- r:ll/z =0
1'1(8
or, inasmuch as BAuj-Avy = M a§$1,
To
(s)
2 APy
§ro °

Ty (s) [rz(s)'%jlfz =

This concept and its proof follow from a suggestion of H. S. Ribner
of the NACA Lewis laboratory.

Thur, from equation (7), (12), end (13),

T
B,
—2 s = (19)
ry(s) (¥-To

for all points (r,s) in region II. Therefore,

T(e ) i 4Py
dr, T, dr, 209
20
(r-r ) 172 (r—ro)]';2

ry(s) ra(s)
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Upon taking the limit as r approaches rp(s), equation (20)
becomes
ro(s) [~ AT
AP AP
I ar IT ar
o~ 11 o> (21)
= m -
17 2
. Ecz(s)-rc;]]]z T —1y(8) (r-z,)
ry(s) | Jra(s)

However, OMPr/dr, must be continuous ‘in the vicinity of ry(s).
(The perturbation velocities on the basic wing can be discontinuous
only along Mach lines or along plan-form edges. Inasmuch as

r = rz(s) is neither of these cases, all derivatives of ACPI must
be continuous in the vicinity of r = ry(s).) When the Kutta con-

dition is imposed, JAPyy/dr, 1s therefore also contimnuous (and
bounded) in the neighborhood of r = ry(s). Then, using a mean
value for JMPry/dr,,

OAPr T
1lim org__©
r—>ry(s) ' (:r-rc.):'-;2
ra(s)
r
= lim E§§££> o -
r— rp(s) To (r2(8)<1‘°<r) (o) (r-ro)'172
1'2 8
=0 (22)
Therefore
ro(s)
AP
%o o 0 (23)
. (s) [ra(e)-zg]

which was to be proved.
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The solution for AuII that satisfies the Kutta condition at
r = rp(s) 1s then, from equations (17a) and (23),

rg(s)
AJr-rz(s) Aup drg (248)
x (s) (r-r,) h}rz(s)-ro

for the wing of figure 3(a). Similarly,

AuII =

e |

32(1')
Bupr = ______43"52(1') duy ds, (24b)
T . (o) (s-so);\fsz(r)-so.
1

for the wing of figure 3(b).

An alternate derivation of equations (24a) and (24b) (appen-
dix D) indicates that only solutions satisfying the Kutta condition
will result from the integral equation formulations of reference S.

Sidewash in region II. - An expression for Avyy can be obtained
by differentiating equation (15) with respect to y. The result is

r\rg(s)
r-rz(s) Avy drg N

7 J rl(s) (r-r,) /Vrz(s)-ro

vyy =

ary(s) [2
1+ 28 BAur-Avy
— ar
2n/\’r-r2(s)J r1(s) /\’rZZSS-rO o

Simllarly, for region IT to the right of region I,

L62T
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Bz(r)

Ms—sz(r) Avy ds, . .
T (s-so)h’sz(r)-so

AVII =

8, (r)

sp(r)
BAu_+Av

ds

1+ dsz(r)

ds
ZnA’s-sz(r)
8

1T

When the Kutta condition applies, these equations become,
respectively,

2(3)
_ ___-_3__2 AvI dro

A .
I T (r-ro)N’rz(s)-ro
: rl(s)

and

AVII

. 32(r)
) A’s—sz(r) ' Avy ds, )
| P 5, (x) (s-so)A,sz(r)-so

It should be noted that when r = rz(s) corresponds to a subsonic
trailing edgs, Avy, as well as Avyy, 1s not generally kmown.

The preceding expressions are therefore primarily useful for those
problems where r = rz(s) corresponds to a subsonic leading edge.

APPLICATIORS

The loeding in region IT of a cancellation wing is given by
the line integrals of equation (17a) or (17b). When the Kutta
condition is imposed at a subsonic trailing edge, the expressions
reduce to equations (24a) and (24b). These equations can be used
to find the load distribution on a large variety of wings that
cannot be solved by cancellation techniques based on conical
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superposition. Wings witn curvilinear plan forms or arbitrary
canber are examples. In each case, however, the solution for the

related wing must be known.

The equations are applied in several illustrative examples.
Only the solution associated with the cancellation wing is con-
sidered. The complete solution consists in the loading of the
related wing mimus the loading of the cancellation wing.

Leading-Edge and Side-Edge Cancellations

In thesebases, the 1lift to be canceled is upstream or to the
side of the plan form for which the loading is desired (figs. 5
and 6).

Tip région of swept wing. - The loading in the region influ-
enced by the side edge (II, and IL;, of fig. 5) of a swept wing
having a subsonic leading and a supersonic traeiling edge can be
obtained by cenceling excess 1lift on a triangular wing. The Kutte
condition is applied across the portion of r = rz(s) influencing
region IIp. The 1lift to be canceled in region I is (reference 13,

equation (23))

Au = Ho%x - 13392(3+r)
T oNe22 %2 NeP(sar)2-(aor)?

where H and €@ are constants defined in sppendix A. The doublet
distribution in region Iy, agein from reference 13, is

(25)

AtPI = H/\lezxz-ﬂgyz = .Bulil\lez(s+r)2-(s-r)z
a .
from which
AV, = OAPrq . _-mfy -_HB(s-r) (26)

Iy 9y No?=2-625%  NoP(ssr)2-(o-7)C

The sidewash distribution in region I;, (that is, AvIb) could be

found by an integration of the type indicated in equation (18b). A
Inowledge of AvIb, however, 1s unnecessary in the present problem

_ because the Kutta condition is applied for region TIIj.

L621
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The loeding in region IIa is obtained by substituting equa-

tions (25) and (26), with r replaced by Ty, dinto equation (17z2),
which yields

ro(s)
R HQZA/r-rZ(s) (s+r°) dro‘
uII = -
8 : (r—ro) Ajr
rl(s)

2(s)-rol\lez(s+r;))2-(s-ro)2

( rz(B)
dr
H[l - 3:)] [0%(asmo ) ooy Jar, (27)

* o A’r-rz(s) (8) l\lrz(s)-roAlez(s+ro)2-(s-ro)2
. I'l 8

For region IT;, the Kutta condition applies and

rz(s)
by, - HBzA,r-rz(siv[\ . (s+ry) ar,
Ib - T
] ry (s) (=-vo) '\[

rz(8)-ro N6Z(8+70)2- (5-70)
(28)
Equations (27) and (28) reduce to elliptic integrals of the first,

second, and third kind upon transforming the variable of integra-
tion from r, to W, according to the relation

]

ro = 1ag | (1-0)5 + agw,? | (29)

where

]

&, (l+6)r2(s)-(1;9)s

Equations (27) and (28) may then be written
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AuIIa - 1t Al80

HGZA’r-rz(B) {.(§+r)£1+95 [%I(%,n,k) - II(¢,n,ki} -

[F(%,k) ) F(¢,k):| } ) Hdijl‘;_r;(i%s—)] {2-[]3(%,1&) - E(¢,k):| -

‘:F (%,k) - F(¢,k)]} | (30)

and

Hezfs’r-rz(s) {(s+r)(l+9) En(zzf_’n’k) - II(¢,n,k):] -

Au =
Iy 7 \ls6

[F (’Et,k) - F(¢,k):|} L (31)

where
X = i% a e = (146) r-(1-8)s
= -1 fl = (1 r,(8)-(1-6)s
goow 2w = (10) m(e)-(1-0)
n=- 2? 8y = (146) rz(s)—(l-e)s

Reentrant side edge. - A plan form has a reentrant edge if a
line of constant ¥y intersects the plan form at more than two
points.

The load distribution in the region influenced by.the reentrant
side edge is to be determined for the wing of figure 6. The side
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edge is first, for simplicity, the straight line =r = Kos, which

is & subsonic trailing edge across which the Kutta condition is
applied. The side edge then alternately becomes a subsonic leading
" and a subsonic trailing edge. The load distribution in region I is

simply the Ackeret wvalue buy = &;ﬂ’ end AvIa = 0. Regions II,,
ITp, and II; are considered separately.
Region IIg.

From equation (24a) with Auy = Z—E-‘U .

Kzs
A‘r-Kzs 2aU dl'o

Aupy
a n e ' B(r-ro) A’Kzs-l'o

= 40U yon-1 ’-@-ﬂﬁ . (32a)
Bx r-Kzs

‘or, in x,y-coordinstes

" R | X+B
AuIIa = “n tan Hm?:%)_ (32p)

Region II.

A knowledge of AvIb is required. From equation (18b),

y/mp x
_ 9 | 4aU -1 xo"'By 20U
"% B | tem ‘\’mzx—o-ﬂd"o*T e
-By v,

mz

201
||

= 20U

Ko+l
%1 (33)




The load ‘distribution in region IT;, is then, recalling that AvIa =0

rz(B)
Au ) Ahurg(s) 2aU drg )
IIb. T B(r-r,) /\’rz(s)-ro

-8

2(5)
drz(B
2all dr,, oot |27 ar,,
2B r-rz(s drz(s) -T, ) K2'1 ;irz(s)-ro

- _ drp(s)
e e ) -
-Tp

r-ro(s)

Region II,.

Because the Kutta condition is applied,

(35)

81

S7y12 NI VOVN



The calculation of 1lift distributions on swept wings having subsonic treiling edges
requires cancellation wings of the type shown in figure 7. These wings cancel that part
of the 1ift of the basic triangular wing that 1s downstream of the traliling edge of the
swept wing (references 3, 4, 6, and 7). The 1lift is specified in region I. The 1lift in

‘ . 1297

Trailing-Edge Cancellation

S7T12 NI VOVN

regions II and III 1s to be determined subject to the conditions that w = O and that the
Kutta condition applies at r = ry(s) and r = ry(s).

The wing of figure 7(a) differs from thé previously discussed cases in that two unknown
regions (II and III) are continuously interacting. A special treatment is required in order
to obtain the loading in reglons II and III. (See, for example, reference 6.) Approximate
solutions can be obtained, however, using equations (24a) and (24b). For example, 1f the
load at (r,s) in region II is desired, first assume that Auyry 18 known, Then

Aupy =

ﬁ!r-rz(s)

b

An expression for AuIII

Auprp =

A’s-sl(ro)

£

B rq(s) rp(s)

AuIII dro . Au, dro

M., (r-ro)A’rz(s)-ro ry (8) (r-ro)hfrz(a)-ro

2p
1s, by integrating along lines of comstant r, (fig. 7(a)),

(36)

85(r,) sl(ro)
Aupy dsg, . Aup ds,
Mo, (S-BO)A’Bl(Td)-Bo 52 (o) (s-8,) dsl(ro)-so
|/ 28

6T



An spproximaste expression for Auppr 1s then

8y (o)
pu.. » NE-8 () L burds, (37)
R BN ey iR
2\to

Equation (36), which may now be written in terms of Aup by substituting equation (37)
for AuIII’ becomes .

ry(s) sy (r,)

A/r-rz(s) dr, AIs-sl(ro)' Aug ds,
T

Aupp = +
Tt Mo, (r-ro)h’rz(s)-ro‘ sz(r ) (s-so)A,sl(ro)-so
—= )
2B
vrz(s)
AuI dl‘o (58 )
r(s) (r-z,) rz(s)—ro

The first term on the right side of equation (38) approximates the contribution of
reglon IIT to the loading in region II. This term, as indicated in reference 6, is
negligible for the commonly encountered Aup distributions (corresponding to steady 1lift,

. B d-y]_ (x)
roll, or pitch) and

> 0.5. For those cases, equation (38) simplifies to

L62T
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’ rg(s) '
oz NE-ra(8) fuy drg ' (39)
I n ) (r-ro)A’rz(B)-ro

The Kutte condition at r = rp(s) is satisfied by both equations (38) end (39). Equa-
tion (39) can be reduced to canonical form by the substitution indicated in equation (29).

When region I has & partly supersonic leading edge (fig. 7(b)), it is possible to
write exact expressions for the linearized load distribution in regions II and III. For

example, the load at point (r,s) of figure 7(b) is

rl(s) Bl(r
R Alr-rz(s) dr, . A’s sl(r Aup ds_
u T eme———
= " o (r-r o)/\}rz(ﬂ) To 33( o) (s- Bo)F\’ 81(ro)-8¢

rg(s)

AU.I
r,(s) (r-ro)A’rz(s)-ro

Successive Cancellations

(40)

A cancellation wing may induce lift that itself must be canceled in order to satisfy
boundery copditions completely. Thus, in figure 8, the cancellation of 1lift in region I

S¥T2 NI VOVN

T2
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induces 1lift in region I'. The cancellation of 1ift in region I
induces 1lift in region I", and so forth. Each of these cancella-
tions is handled as previously described. These computations are
very tedious when 1lift is induced upstream of a subsonic leading
edge (for example, region I' of fig. 8), inasmuch as a knowledge
of the sidewash (AvI,), as well as of the lift distribution

(AuI:) » 18 needed in order to contimue the cancellation process.
Numerical methods are generally required.

Successive cancellations are discussed more oxtensively in
references 3 and 4.

SUMMARY OF ANATYSIS AND APPLICATIONS

A general expression was determined for the lift distribution
over a cancellation wing. The expression is valid when the plan-
form boundary (on cancellation wing) separating the region of zero
upwash from the reglon for which the 1ift is specified is everywhere
subsonically inclined to the free stream. This expression permits
the determination of 1lift distributions on wings that cannot be
solved by cancellation techniques based on conical supsrposition.
The boundary conditions for eilther the flow sbout a subsonlc leading
edge or a subsonic trailing edge can be satisfied.

The 1ift cancellation technique was illustrated for swept wings
having curvilinear plan forms. ILsading-edge and trailing-edge
cancellations were considered. In addition, the loading in a region
influenced by a reentrant side edge was found.

Lewis Flight Propulsion Leboratory,
National Advisory Committee for Aeronsutics,
Cleveland, Ohio, January 16, 1950.
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

8 (148)r-(1-8)s
a1 (1+6)r(8)-(1-6)s
az (1+9)r2(3)-(1~9)8
. . Pa=D
ACP local 1ift coefficient, B PT
c constant
Cyp root chord of swept wing
B(F,k) elliptic integral of second kind,
sin ¢
A’l-kz 0 2
B(g,k) = =01,
o  Nr-wo
7(g,k) elliptic integral of first kind,
sin ¢
au%
F(¢:k) =
2 2 2
/\l(l—mo ) (1-k%0 %)
G(r,s,) function of r and s, defined by equation (12)
" = 20U
19
BE <§,‘ J 1-62 >

K slope of plan-form edge in r,s-coordinates, dr/ds

k modulus of elliptic integrals
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TyTq
8,8,
u,v,w
Au =

Av =

x,xo
y)yo

11(@,n,k)

NACA TN 2145

Mach number
slope of plan-form edge in x,y-coordingtes, dy/dx
parameter of elliptic integral of third kind

local static pressure

R

2

Mach coordinate system (equation (4))

free~-stream velocity

perturbation velocities in x-, y-, end z-directions,
respectively

up-ug (proportional to local lift)

Vp~Vg

Cartesian coordinate system

angle of sttack

A M2-1
semivertex angle of triangula} wing
B tan &

elliptic integral of third kind,

sin ¢
dw
o

(14n (noz) ’\Rl—k2 (002) (1- o)oz)
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p
T
P

AP

Wo

Regions:

Ia)Ib’ .« o o
II
IIa,II’b’ o @

IIT

density

area of'integration

amplitude of elliptic integrals
perturbation velocity potential

doublet strength, ®p-Pg

integration variable

region on cancellation wing for whilch loading is
specified

subdivisions of reglon I

region on cancellation wing for which w =0

subdivisions of region II

additionsl region on cancellation wing for which
w=20

Special designations:

r =
s = sy(r) s
y=y(x) 7
x=1x(y) x
r = rz(s)- r

s = s5(r) s

and so forth.

as

as

as

as

as

rl(s) r as function of 8 along plan-form boundary 1

function of r along plan-form boundary 1
function of x along plan-form boundary 1
function of ¥y along plen-form boundary 1

function of 8 along plan-form boundary 2

function of r along plan-form boundary 2
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Subscripts:

3,2,3 refers to plan-form boundaries 1, 2, and 3, respectively
I,I1 refers to regions I and II, respectively

B ) bottom surface of z = 0 plane

T top surface of z = O plane

o variable of Integration
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APPENDIX B

SOLUTION OF INTEGRAL EQUATIONS

Consider the following integral equation (in the mnotation of

the appendix in reference 5), where the function f£(x) is assumed
known and the function u($) is to be determined:

X
o(x) = u(t) at
=) o (x-E,)?’;2
r\x
| Lu®)ux]at  zulx) -
] (x-£)3/2  (z-0)/2 .
a

After an integration by parts, equation (Bl) may be written

_f(x) _ u(a) _ u'(t) 4 (B2)
2 (@22 | (x-p)l
Equation (B2) 1s now an integral equation of the Abel type. The
continuous solution for u(f) is (reference 14)

2
1 £(x) ax
u(Z)=-ﬂfz;§§m (B3)
a

eveluated at z = §{. This result is presented in reference 5.
Equation (11b) corresponds to equation (Bl) with wu(§) = G(r,s,)
end f(x) = 0. The solution for G(r,s),

according to equa-
tion (B3), is then

G(r,sy) =0

(13)
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Equetion (14) corresponds to equation (Bl) with

£ = To a = r2(so)
r2(3 )
x=r £(x) =- —Lo?%
ry(s,)
u(g) = ACPII

The solution for A¢&I according to equation (B3) is then’

z r2(s )
1 NP dr (B4
Prr = 2 /Jﬁ (r-r )3; )
o
rz(s )
After reversing the order of integration and integrating,
ro(s,)
z-r5(8,) &py dr
oy - Nom2(%) (35)
(z-r )A’rz(so) -To
rl(s )
o
Equation (BS), evaluated at z =r and 8o =8, yields
Al__——__—_ ‘ 2(8)
r-ro(s) AP
APIT = ———— (15)

1 4T,
T rl(s) (r-ro)A’rZ(é)-ro

The derivation of equation (15) is similar to that for equa-
tion (16) of reference 5.

L62T
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" APPENDIX C

DIFFERENTTATION TO OBTAIN Augy

The differentiation indicated in equation (16)

/ rz(S) >‘.
28, (3,23 A[r-r5(s) A%y drg (16)
M AUrT <6; + §§> b8 rl(s) (r-ro)A}rz(S)-ro

is to be conducted.

First
ary(s) [T
8ty = . =1 o *
| ZnA/r-rz(s) r(s) (r-ry) Alra(s)-r,
2(3)
Ar-zp(s) (56_ . ,aa_> A% g (c1)
i * ® rl(s) (r‘ro)ﬂf;;(;j:;; '
Inasmuch as N?I is a function of r, and s,
ro(s) ro(s) |
d A% dry . A%y dr,

< = -
T oy (8) (r-ro)A’rz(s)—ro r(s) (r-r»o)2 Jrz(s)-ro

(c2a)
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and

2_(3) 2(5) BACPI>
&Py arg s /o

d
= +
o8 £y (6) (r-ro)A’rz(s)-ro r1(8) (r-ro)«[g(s)-ro

1 arp(s) | ° AP, dr;
lim -5 = - +
r — r5(s) 2 as [(s)(r-ro)[rz(s)—rojs/z
1

¢

(Npl)ro = T(8) drpy(s) (8P1)ry = ry(s) dry (s)
(r-ro) rz(:s)—ro ds - I:r-rl(s):]/\’rz(s)—rl(s) ds
(c2p)

However, (ACPI)I.O = ry(s) = 0 and, by integration by parts,

r2(s) 2(2) OA®. AP,
AP, &, 575 - -2 [’B?i + (r‘ro)]dro +
5) (r-ro)Erz(s)-r;I 1 (s) (r-ro)l\’rz(s)-ro

rl(

. ro
1lim
I‘o—) 1'2(5) (r-ro)h’rz(s)-ro:l ( )
rl 8

so that equation (C2b) can be written as

L62T
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r2(s) | 72(8)
3 APy dr, 55~ %o

% r (8)(r To) Alrz(8)-7o r1(3) (r-ro)N r2(s)-r,

rz(s) 8
E.r_z.(_s_) l:aro (r-ro):l ar,

ds

(c3)
(r-r ) 1’2(5) r, :
r1(s)

Upon substituting equations (C2a) and (C3) into equation (Cl) and
integrating by parts those integrals containing A¢&, equation (C1)
finally reduces to

Tz(s)
N r-r,(s) fu dr

A = — -
urT S (r-ro)q/rz(s)-ro

ry(s)

rz(s)
drz(s)

(BAuI-AvI) dro

ds
2pap r-rp(s) r(5) A{rz(s)-ro

(17a)
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APPENDIX D

ALTERNATE DERIVATION OF SOLUTION SATISFYING
KUTTA CONDITION AT r = rz(s)

The integral equation formulation in terms of AP (equa-
tion (14)) resulted in a solution that was continuous in AP
(equation (15)) but discontinuous, in gemeral, in the derivative
§%§>= Au (equation (17a)) at r = rp(s). In order to obtain a
solution continmuous in Au, an integral equation may be formulated
that is similer to equation (14), but in terms of Au rather than
A®. The inversion shown in appendix B should result in a solution
that is continuous in Au but discontinuous in the derivatives of
Au at r = 1ry(s).

Consider equation (10) for the w distribution in the
%z = O plane. This equation will be differentliated with respect to
x using a technique introduced in reference 15 (equations (1) to
(3)). The expression for w at any point (r,s) is, from

equation (10),
.o Ml Aq’dro dso ‘ | (D1)
81‘( \/I(s-so)sfz(r-ro)S/z

where T 1is the area abc in figure 9(a). The wing is moved
upstream a distance dx (fig. 9(b)), keeping the coordinate system
fixed in space. The expression for the upwash at (r,s) now
becomes . .

r

oA
aw ,M (A¢+de> dl‘o dSo
W+ = dx = - o - 3z 37z +
T (8-85)" “(r-r,)

(o] O. (Dz)
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The second term on the right side of equation (D2) is zero because
AP = 0 along the leading edge. Subtraction of equation (Dl) from
equation (D2) then yields

M Au ar, ds,
- — (D3
. JI(B'SO)S/Z(r‘ro)S/Z )

For points in region II of a cancellation wing, %; = 0. Thus,
for the wing of figure 3(a),

Au dr (D8)
(s-8 )3; vy (5,) (r-rq ) ez )2 .
80

This equation is the same as equation (1lla) except that Au replaces
AP, The inversion by Abel's integral equation, for Auyy in terms

of Auy then gives (from equation (15))

2(3)
b, - A’r-r (8) Au dr,, (248)
( ) (I‘- o) I\‘rg(s) ~Tq

Ingsmuch as the integral equations of reference 5 are formulated
in terms of Au and are inverted by means of Abel's integral equa-
tion, only solutions satisfying the Kutta condition will result
therein. '

-
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A -
7~ ~
7 ‘~\\
i - ox SN Mach line
w=—a0 7 w==al Au=0 N
P ~
- ~N
7
7
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a

7
rd
(2) Given wing.
S
- \\
ad x \
w==al 7 w==aU | w=—qU
Au=AuI 7 _ | -
- Au=Auyp / Au=Aug
7 - /
// z d

(b) Two—dimensional winge.

(¢) Cancellation wing. :

Figure 1. - Superposition tb obtain 1ift on given wing by
canceling 1ift on two-dimensional wing. (Given wing equals
two-dimensional wing minus cancellation wing.)
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Flgure 2. ~ Typical cancellation wing.

NACA TN 2145
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(a) Reglon I Intersected by right forward Mach line from (r,s).

37

(b) Reglon I intersected by left forward Mach line from (r,s)e.

Flgure 3. - Geometric Interpretation of terms in equations (17a) and
(17v).
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L62T

(2) Reglon I upstream of region II (along r=r2(s)).

vy =constant

(x,¥)
x=Xxo(y)
r=r2(s)

(b) Region II upstream of region I (along r=r2(s)).

‘ﬁ!mu;!"

Figure 4. — Possible relations between regions I and II in regard
to determination of Avy.



Figure 5. - Cancellation for obtaining loading 1n tip region of swept wing
having supersonic trailing edges.
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Figure 6. - Cancellation for obtaining loading in region influenced by reentrant side
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(b) Regions II and III not continuously interacting. El

Figure 7. - Typical cancellation wings for canceling 1ift downstream of
subsonle trailing edge of swept wings.
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Filgure 8. - Successive cancellations.
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Figure 9°
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(b) Wing move
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